کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640130 1341262 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Periodic solutions of a derivative nonlinear Schrödinger equation: Elliptic integrals of the third kind
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Periodic solutions of a derivative nonlinear Schrödinger equation: Elliptic integrals of the third kind
چکیده انگلیسی

The nonlinear Schrödinger equation (NLSE) is an important model for wave packet dynamics in hydrodynamics, optics, plasma physics and many other physical disciplines. The ‘derivative’ NLSE family usually arises when further nonlinear effects must be incorporated. The periodic solutions of one such member, the Chen–Lee–Liu equation, are studied. More precisely, the complex envelope is separated into the absolute value and the phase. The absolute value is solved in terms of a polynomial in elliptic functions while the phase is expressed in terms of elliptic integrals of the third kind. The exact periodicity condition will imply that only a countable set of elliptic function moduli is allowed. This feature contrasts sharply with other periodic solutions of envelope equations, where a continuous range of elliptic function moduli is permitted.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 13, 1 May 2011, Pages 3825–3830
نویسندگان
, ,