کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640293 1341269 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials
چکیده انگلیسی

We propose a novel approach to the problem of multi-degree reduction of Bézier triangular patches with prescribed boundary control points. We observe that the solution can be given in terms of bivariate dual discrete Bernstein polynomials. The algorithm is very efficient thanks to using the recursive properties of these polynomials. The complexity of the method is O(n2m2)O(n2m2), nn and mm being the degrees of the input and output Bézier surfaces, respectively. If the approximation—with appropriate boundary constraints—is performed for each patch of several smoothly joined triangular Bézier surfaces, the result is a composite surface of global CrCr continuity with a prescribed order rr. Some illustrative examples are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 3, 1 December 2010, Pages 785–804
نویسندگان
, ,