کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4640298 | 1341269 | 2010 | 20 صفحه PDF | دانلود رایگان |

In this study, we propose a 3D generalized micro heat transfer model in an N -carrier system with the Neumann boundary condition in spherical coordinates, which can be applied to describe the non-equilibrium heating in biological cells. Two improved unconditionally stable Crank–Nicholson schemes are then presented for solving the generalized model. In particular, we delicately adjust the location of the interior grid point that is next to the boundary so that the Neumann boundary condition can be applied directly without discretization. As such, a second-order accurate finite difference scheme without using any fictitious grid points is obtained. The convergence rates of the numerical solution are tested by an example. Results show that the convergence rates of the present schemes are about 2.0 with respect to the spatial variable rr, which improves the accuracy of the Crank–Nicholson scheme coupled with the conventional first-order approximation for the Neumann boundary condition.
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 3, 1 December 2010, Pages 850–869