کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640375 1341273 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A posteriori error estimators for nonconforming finite element methods of the linear elasticity problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A posteriori error estimators for nonconforming finite element methods of the linear elasticity problem
چکیده انگلیسی

In this work we derive and analyze a posteriori error estimators for low-order nonconforming finite element methods of the linear elasticity problem on both triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement. First, it is shown that equilibrated Neumann data on interelement boundaries are simply given by the local weak residuals of the numerical solution. The first error estimator is then obtained by applying the equilibrated residual method with this set of Neumann data. From this implicit estimator we also derive two explicit error estimators, one of which is similar to the one proposed by Dörfler and Ainsworth (2005) [24] for the Stokes problem. It is established that all these error estimators are reliable and efficient in a robust way with respect to the Lamé constants. The main advantage of our error estimators is that they yield guaranteed, i.e., constant-free upper bounds for the energy-like error (up to higher order terms due to data oscillation) when a good estimate for the inf–sup constant is available, which is confirmed by some numerical results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 1, 1 November 2010, Pages 186–202
نویسندگان
, ,