کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640597 1341280 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On very accurate enclosure of the optimal constant in the a priori error estimates for H02-projection
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On very accurate enclosure of the optimal constant in the a priori error estimates for H02-projection
چکیده انگلیسی

We present constructive a priori error estimates for H02-projection into a space of polynomials on a one-dimensional interval. Here, “constructive” indicates that we can obtain the error bounds in which all constants are explicitly given or are represented in a numerically computable form. Using the properties of Legendre polynomials, we consider a method by which to determine these constants to be as small as possible. Using the proposed technique, the optimal constant could be enclosed in a very narrow interval with result verification. Furthermore, constructive error estimates for finite element H02-projection in one dimension are presented. These types of estimates will play an important role in the numerical verification of solutions for nonlinear fourth-order elliptic problems as well as in the guaranteed a posteriori error analysis for the finite element method or the spectral method (e.g. Hashimoto et al. (2006) [2], Nakao et al. (2008) [3], Watanabe et al. (2009) [11]).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 234, Issue 2, 15 May 2010, Pages 526–537
نویسندگان
, ,