کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640718 1341285 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A variable preconditioned GCR(mm) method using the GSOR method for singular and rectangular linear systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A variable preconditioned GCR(mm) method using the GSOR method for singular and rectangular linear systems
چکیده انگلیسی

The Generalized Conjugate Residual (GCR) method with a variable preconditioning is an efficient method for solving a large sparse linear system Ax=bAx=b. It has been clarified by some numerical experiments that the Successive Over Relaxation (SOR) method is more effective than Krylov subspace methods such as GCR and ILU(0) preconditioned GCR for performing the variable preconditioning. However, SOR cannot be applied for performing the variable preconditioning when solving such linear systems that the coefficient matrix has diagonal entries of zero or is not square. Therefore, we propose a type of the generalized SOR (GSOR) method. By numerical experiments on the singular linear systems, we demonstrate that the variable preconditioned GCR using GSOR is effective.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 234, Issue 3, 1 June 2010, Pages 703–712
نویسندگان
, , ,