کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4640756 1341286 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fast Fourier-collocation method for second boundary integral equations
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A fast Fourier-collocation method for second boundary integral equations
چکیده انگلیسی

In this paper we develop a fast collocation method for second boundary integral equations by the trigonometric polynomials. We propose a convenient way to compress the dense matrix representation of a compact integral operator with a smooth kernel under the Fourier basis and the corresponding collocation functionals. The compression leads to a sparse matrix with only O(nlog2n)O(nlog2n) number of nonzero entries, where 2n+12n+1 denotes the order of the matrix. Thus we develop a fast Fourier-collocation method. We prove that the fast Fourier-collocation   method gives the optimal convergence order up to a logarithmic factor. Moreover, we design a fast scheme for solving the corresponding truncated linear system. We establish that this algorithm preserves the quasi-optimal convergence of the approximate solution with requiring a number of O(nlog3n)O(nlog3n) multiplications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 234, Issue 1, 1 May 2010, Pages 165–173
نویسندگان
,