کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641090 1341296 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reduced-dissipation remapping of velocity in staggered arbitrary Lagrangian–Eulerian methods
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Reduced-dissipation remapping of velocity in staggered arbitrary Lagrangian–Eulerian methods
چکیده انگلیسی

Remapping is an essential part of most Arbitrary Lagrangian–Eulerian (ALE) methods. In this paper, we focus on the part of the remapping algorithm that performs the interpolation of the fluid velocity field from the Lagrangian to the rezoned computational mesh in the context of a staggered discretization. Standard remapping algorithms generate a discrepancy between the remapped kinetic energy, and the kinetic energy that is obtained from the remapped nodal velocities which conserves momentum. In most ALE codes, this discrepancy is redistributed to the internal energy of adjacent computational cells which allows for the conservation of total energy. This approach can introduce oscillations in the internal energy field, which may not be acceptable. We analyze the approach introduced in Bailey (1984) [11] which is not supposed to introduce dissipation. On a simple example, we demonstrate a situation in which this approach fails. A modification of this approach is described, which eliminates (when it is possible) or reduces the energy discrepancy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 233, Issue 12, 15 April 2010, Pages 3148–3156
نویسندگان
, , , ,