کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4641217 | 1341299 | 2009 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper investigates a nonlinear inverse problem associated with the heat conduction problem of identifying a Robin coefficient from boundary temperature measurement. A Bayesian inference approach is presented for the solution of this problem. The prior modeling is achieved via the Markov random field (MRF). The use of a hierarchical Bayesian method for automatic selection of the regularization parameter in the function estimation inverse problem is discussed. The Markov chain Monte Carlo (MCMC) algorithm is used to explore the posterior state space. Numerical results indicate that MRF provides an effective prior regularization, and the Bayesian inference approach can provide accurate estimates as well as uncertainty quantification to the solution of the inverse problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 231, Issue 2, 15 September 2009, Pages 840-850
Journal: Journal of Computational and Applied Mathematics - Volume 231, Issue 2, 15 September 2009, Pages 840-850
نویسندگان
Liang Yan, Fenglian Yang, Chuli Fu,