کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641217 1341299 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems
چکیده انگلیسی
This paper investigates a nonlinear inverse problem associated with the heat conduction problem of identifying a Robin coefficient from boundary temperature measurement. A Bayesian inference approach is presented for the solution of this problem. The prior modeling is achieved via the Markov random field (MRF). The use of a hierarchical Bayesian method for automatic selection of the regularization parameter in the function estimation inverse problem is discussed. The Markov chain Monte Carlo (MCMC) algorithm is used to explore the posterior state space. Numerical results indicate that MRF provides an effective prior regularization, and the Bayesian inference approach can provide accurate estimates as well as uncertainty quantification to the solution of the inverse problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 231, Issue 2, 15 September 2009, Pages 840-850
نویسندگان
, , ,