کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641293 1341302 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation AXB+CYD=EAXB+CYD=E
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation AXB+CYD=EAXB+CYD=E
چکیده انگلیسی

In this paper, two efficient iterative methods are presented to solve the symmetric and skew symmetric solutions of a linear matrix equation AXB+CYD=EAXB+CYD=E, respectively, with real pair matrices XX and YY. By these two iterative methods, the solvability of the symmetric and skew symmetric solutions for the matrix equation can be determined automatically. When the matrix equation has symmetric and skew symmetric solutions, then, for any initial pair matrices X0X0 and Y0Y0, symmetric and skew symmetric solutions can be obtained within finite iteration steps in the absence of roundoff errors, and the minimum norm of the symmetric and skew symmetric solutions can be obtained by choosing a special kind of initial pair matrices. In addition, the unique optimal approximation pair solution X̂ and Ŷ to the given matrices X¯ and Y¯ in Frobenius norm can be obtained by finding the minimum norm solution of a new matrix equation AX˜B+CY˜D=E˜, where E˜=E−AX¯B−CY¯D. The given numerical examples demonstrate that the iterative methods are quite efficient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 233, Issue 11, 1 April 2010, Pages 3030–3040
نویسندگان
, ,