کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641295 1341302 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hermite learning with gradient data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Hermite learning with gradient data
چکیده انگلیسی

The problem of learning from data involving function values and gradients is considered in a framework of least-square regularized regression in reproducing kernel Hilbert spaces. The algorithm is implemented by a linear system with the coefficient matrix involving both block matrices for generating Graph Laplacians and Hessians. The additional data for function gradients improve learning performance of the algorithm. Error analysis is done by means of sampling operators for sample error and integral operators in Sobolev spaces for approximation error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 233, Issue 11, 1 April 2010, Pages 3046–3059
نویسندگان
, , ,