کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4641449 | 1341309 | 2008 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence and optimization of the parallel method of simultaneous directions for the solution of elliptic problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For the solution of elliptic problems, fractional step methods and in particular alternating directions (ADI) methods are iterative methods where fractional steps are sequential. Therefore, they only accept parallelization at low level. In [T. Lu, P. Neittaanmäki, X.C. Tai, A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations, RAIRO Modél. Math. Anal. Numér. 26 (6) (1992) 673-708], Lu et al. proposed a method where the fractional steps can be performed in parallel. We can thus speak of parallel fractional step (PFS) methods and, in particular, simultaneous directions (SDI) methods. In this paper, we perform a detailed analysis of the convergence and optimization of PFS and SDI methods, complementing what was done in [T. Lu, P. Neittaanmäki, X.C. Tai, A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations, RAIRO Modél. Math. Anal. Numér. 26 (6) (1992) 673-708]. We describe the behavior of the method and we specify the good choice of the parameters. We also study the efficiency of the parallelization. Some 2D, 3D and high-dimensional tests confirm our results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 222, Issue 2, 15 December 2008, Pages 458-476
Journal: Journal of Computational and Applied Mathematics - Volume 222, Issue 2, 15 December 2008, Pages 458-476
نویسندگان
J.R. Galo, I.I. Albarreal, M.C. Calzada, J.L. Cruz, E. Fernández-Cara, M. MarÃn,