کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641456 1341309 2008 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local convergence of inexact methods under the Hölder condition
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Local convergence of inexact methods under the Hölder condition
چکیده انگلیسی

We study the convergence properties for some inexact Newton-like methods including the inexact Newton methods for solving nonlinear operator equations on Banach spaces. A new type of residual control is presented. Under the assumption that the derivative of the operator satisfies the Hölder condition, the radius of convergence ball of the inexact Newton-like methods with the new type of residual control is estimated, and a linear and/or superlinear convergence property is proved, which extends the corresponding result of [B. Morini, Convergence behaviour of inexact Newton methods, Math. Comput. 68 (1999) 1605–1613]. As an application, we show that the inexact Newton-like method presented in [R.H. Chan, H.L. Chung, S.F. Xu, The inexact Newton-like method for inverse eigenvalue problem, BIT Numer. Math. 43 (2003) 7–20] for solving inverse eigenvalue problems can be regarded equivalently as one of the inexact Newton-like methods considered in this paper. A numerical example is provided to illustrate the convergence performance of the algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 222, Issue 2, 15 December 2008, Pages 544–560
نویسندگان
, ,