کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641801 1341320 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic expansions for Riesz fractional derivatives of Airy functions and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Asymptotic expansions for Riesz fractional derivatives of Airy functions and applications
چکیده انگلیسی

Riesz fractional derivatives of a function, Dxαf(x) (also called Riesz potentials), are defined as fractional powers of the Laplacian. Asymptotic expansions for large xx are computed for the Riesz fractional derivatives of the Airy function of the first kind, Ai(x)Ai(x), and the Scorer function, Gi(x)Gi(x). Reduction formulas are provided that allow one to express Riesz potentials of products of Airy functions, Dxα{Ai(x)Bi(x)} and Dxα{Ai2(x)}, via DxαAi(x) and DxαGi(x). Here Bi(x)Bi(x) is the Airy function of the second type. Integral representations are presented for the function A2(a,b;x)=Ai(x−a)Ai(x−b)A2(a,b;x)=Ai(x−a)Ai(x−b) with a,b∈Ra,b∈R and its Hilbert transform. Combined with the above asymptotic expansions they can be used for computing asymptotics of the Hankel transform of Dxα{A2(a,b;x)}. These results are used for obtaining the weak rotation approximation for the Ostrovsky equation (asymptotics of the fundamental solution of the linearized Cauchy problem as the rotation parameter tends to zero).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 232, Issue 2, 15 October 2009, Pages 201–215
نویسندگان
, ,