کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641860 1341321 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel
چکیده انگلیسی

This paper is concerned with a trigonometric Hermite wavelet Galerkin method for the Fredholm integral equations with weakly singular kernel. The kernel function of this integral equation considered here includes two parts, a weakly singular kernel part and a smooth kernel part. The approximation estimates for the weakly singular kernel function and the smooth part based on the trigonometric Hermite wavelet constructed by E. Quak [Trigonometric wavelets for Hermite interpolation, Math. Comp. 65 (1996) 683–722] are developed. The use of trigonometric Hermite interpolant wavelets for the discretization leads to a circulant block diagonal symmetrical system matrix. It is shown that we only need to compute and store O(N)O(N) entries for the weakly singular kernel representation matrix with dimensions N2N2 which can reduce the whole computational cost and storage expense. The computational schemes of the resulting matrix elements are provided for the weakly singular kernel function. Furthermore, the convergence analysis is developed for the trigonometric wavelet method in this paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 215, Issue 1, 15 May 2008, Pages 242–259
نویسندگان
, ,