کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641894 1341323 2008 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solution of the matrix eigenvalue problem VA+A*V=μVVA+A*V=μV with applications to the study of free linear dynamical systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Solution of the matrix eigenvalue problem VA+A*V=μVVA+A*V=μV with applications to the study of free linear dynamical systems
چکیده انگلیسی

The new idea   is to study the stability behavior of the solution x=x(t)x=x(t) of the initial value problem x˙=Ax,t⩾t0,x(t0)=x0, with A∈Cn×nA∈Cn×n, in a weighted (semi-) norm ∥·∥R∥·∥R where R is taken as an appropriate solution of the matrix eigenvalue problem  RA+A*R=ρRRA+A*R=ρR, rather than as the solution of the algebraic Lyapunov matrix equation  RA+A*R=-SRA+A*R=-S with given positive (semi-) definite matrix S. Substantially better results are obtained by the new method. For example, if A   is diagonalizable and all eigenvalues λi(A)λi(A) have negative real parts, i.e., Reλi(A)<0,i=1,…,n, then ρ=ρi=2Reλi(A)<0, the associated eigenmatrices R=RiR=Ri are positive semi-definite, and ∥x(t)∥Ri=∥x0∥RieReλi(A)(t-t0)→0(t→∞), which is much more than the old result, which only states that limt→∞x(t)=0. Especially, the semi-norms ∥·∥Ri∥·∥Ri have a decoupling and filter effect on x(t)x(t). Further, new two-sided bounds (depending on x0x0) for the asymptotic behavior can be derived. The best constants in the bounds are obtained by the differential calculus of norms. Applications are made to free linear dynamical systems, and computations underpin the theoretical findings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 213, Issue 1, 15 March 2008, Pages 142–165
نویسندگان
,