کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4641916 | 1632054 | 2008 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On structure of bivariate spline space of lower degree over arbitrary triangulation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The structure of bivariate spline space over arbitrary triangulation is complicated because the dimension of a multivariate spline space depends not only on the topological property of the triangulation but also on its geometric property. A new vertex coding method to a triangulation is introduced in this paper to further study structure of the spline spaces. The upper bound of the dimension of spline spaces over triangulation given by L.L. Schumaker is slightly improved via the new vertex coding method. The structure of multivariate spline spaces S21(âµ) and S31(âµ) over arbitrary triangulation are studied via the method of smoothness cofactor and the structure matrix of multivariate spline ring by Luo and Wang. A kind of sufficient conditions on judging non-singularity of the S21(âµ) and S31(âµ) spaces over arbitrary triangulation is given, which only depends on the topological property of the triangulation. From the sufficient conditions, a triangulation strategy is presented at the end of the paper. The strategy ensures that the constructed triangulation is non-singular (or generic) for S21 and S31.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 220, Issues 1â2, 15 October 2008, Pages 34-50
Journal: Journal of Computational and Applied Mathematics - Volume 220, Issues 1â2, 15 October 2008, Pages 34-50
نویسندگان
Zhongxuan Luo, Yu Liu, Lijuan Chen,