کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641947 1632054 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Derivative reproducing properties for kernel methods in learning theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Derivative reproducing properties for kernel methods in learning theory
چکیده انگلیسی

The regularity of functions from reproducing kernel Hilbert spaces (RKHSs) is studied in the setting of learning theory. We provide a reproducing property for partial derivatives up to order s   when the Mercer kernel is C2sC2s. For such a kernel on a general domain we show that the RKHS can be embedded into the function space CsCs. These observations yield a representer theorem for regularized learning algorithms involving data for function values and gradients. Examples of Hermite learning and semi-supervised learning penalized by gradients on data are considered.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 220, Issues 1–2, 15 October 2008, Pages 456–463
نویسندگان
,