کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4642043 1341328 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic properties of some triangulations of the sphere
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Asymptotic properties of some triangulations of the sphere
چکیده انگلیسی

In this paper we analyse a method for triangulating the sphere originally proposed by Baumgardner and Frederickson in 1985. The method is essentially a refinement procedure for arbitrary spherical triangles that fit into a hemisphere. Refinement is carried out by dividing each triangle into four by introducing the midpoints of the edges as new vertices and connecting them in the usual ‘red’ way. We show that this process can be described by a sequence of piecewise smooth mappings from a reference triangle onto the spherical triangle. We then prove that the whole sequence of mappings is uniformly bi-Lipschitz and converges uniformly to a non-smooth parameterization of the spherical triangle, recovering the Baumgardner and Frederickson spherical barycentric coordinates. We also prove that the sequence of triangulations is quasi-uniform, that is, areas of triangles and lengths of the edges are roughly the same at each refinement level. Some numerical experiments confirm the theoretical results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 211, Issue 1, 15 January 2008, Pages 11–22
نویسندگان
, , ,