کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4642166 1341333 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Legendre modified moments for Euler's constant
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Legendre modified moments for Euler's constant
چکیده انگلیسی

Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181–216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369–382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289–317 [4]] or numerical resolution of linear systems [C. Brezinski, Padé-type approximation and general orthogonal polynomials, ISNM, vol. 50, Basel, Boston, Stuttgart, Birkhäuser, 1980 [3]]. These modified moments can also be used to accelerate the convergence of sequences to a real or complex numbers if the error satisfies some properties as done in [C. Brezinski, Accélération de la convergence en analyse numérique, Lecture Notes in Mathematics, vol. 584. Springer, Berlin, New York, 1977; M. Prévost, Padé-type approximants with orthogonal generating polynomials, J. Comput. Appl. Math. 9(4) (1983) 333–346]. In this paper, we use Legendre modified moments to accelerate the convergence of the sequence Hn-log(n+1)Hn-log(n+1) to the Euler's constant γγ. A formula for the error is given. It is proved that it is a totally monotonic sequence. At last, we give applications to the arithmetic property of γγ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 219, Issue 2, 1 October 2008, Pages 484–492
نویسندگان
,