کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4642166 | 1341333 | 2008 | 9 صفحه PDF | دانلود رایگان |

Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181–216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369–382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289–317 [4]] or numerical resolution of linear systems [C. Brezinski, Padé-type approximation and general orthogonal polynomials, ISNM, vol. 50, Basel, Boston, Stuttgart, Birkhäuser, 1980 [3]]. These modified moments can also be used to accelerate the convergence of sequences to a real or complex numbers if the error satisfies some properties as done in [C. Brezinski, Accélération de la convergence en analyse numérique, Lecture Notes in Mathematics, vol. 584. Springer, Berlin, New York, 1977; M. Prévost, Padé-type approximants with orthogonal generating polynomials, J. Comput. Appl. Math. 9(4) (1983) 333–346]. In this paper, we use Legendre modified moments to accelerate the convergence of the sequence Hn-log(n+1)Hn-log(n+1) to the Euler's constant γγ. A formula for the error is given. It is proved that it is a totally monotonic sequence. At last, we give applications to the arithmetic property of γγ.
Journal: Journal of Computational and Applied Mathematics - Volume 219, Issue 2, 1 October 2008, Pages 484–492