کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4642255 1341336 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Given a one-step numerical scheme, on which ordinary differential equations is it exact?
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Given a one-step numerical scheme, on which ordinary differential equations is it exact?
چکیده انگلیسی

A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk’s second-order rational, and van Niekerk’s third-order rational methods are presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 223, Issue 2, 15 January 2009, Pages 1058–1065
نویسندگان
,