کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4642457 1341344 2007 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving parabolic and hyperbolic equations by the generalized finite difference method
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Solving parabolic and hyperbolic equations by the generalized finite difference method
چکیده انگلیسی

Classical finite difference schemes are in wide use today for approximately solving partial differential equations of mathematical physics. An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method, that can be applied to irregular grids of points.In this paper the extension of the GFD to the explicit solution of parabolic and hyperbolic equations has been developed for partial differential equations with constant coefficients in the cases of considering one, two or three space dimensions. The convergence of the method has been studied and the truncation errors over irregular grids are given.Different examples have been solved using the explicit finite difference formulae and the criterion of stability. This has been expressed in function of the coefficients of the star equation for irregular clouds of nodes in one, two or three space dimensions. The numerical results show the accuracy obtained over irregular grids. This paper also includes the study of the maximum local error and the global error for different examples of parabolic and hyperbolic time-dependent equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 209, Issue 2, 15 December 2007, Pages 208–233
نویسندگان
, , ,