کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4642721 1341354 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Special functions arising in the study of semi-linear equations in circular domains
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Special functions arising in the study of semi-linear equations in circular domains
چکیده انگلیسی
Rayleigh functions are defined by the formulaσl(ν)=∑n=1∞1λν,n2l,where l=1,2,3,…;λν,n≠0 are zeros of the Bessel function Jν(x) and n=1,2,3,…, is the number of the zero. These functions appear in the classical problems of vibrating circular membranes, heat conduction in cylinders and diffraction through circular apertures. In the present paper it is shown that a new family of special functions, convolutions of Rayleigh functions with respect to the Bessel index,(1)Rl(m)=∑p,k=-∞;p+k=m∞∑q,s=1∞1λp,q2l1λk,s2lforl=1,2,…;m=0,±1,±2,…,arises in constructing solutions of semi-linear evolution equations in circular domains (see also [V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424]). As an example of its application a forced Cahn-Hilliard equation is considered in a unit disc with homogeneous boundary and initial conditions. Construction of its global-in-time solutions involves the use of R1(m) and R2(m). A general representation of Rl(m) is deduced and on the basis of that a particular result for R2(m) is obtained convenient for computing its asymptotics as |m|→∞. The latter issue is important for establishing a function space to which a solution of the corresponding problem belongs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 202, Issue 1, 1 May 2007, Pages 105-121
نویسندگان
,