کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4642889 1341359 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the convergence of Newton's method for a class of nonsmooth operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On the convergence of Newton's method for a class of nonsmooth operators
چکیده انگلیسی

We provide an analog of the Newton–Kantorovich theorem for a certain class of nonsmooth operators. This class includes smooth operators as well as nonsmooth reformulations of variational inequalities. It turns out that under weaker hypotheses we can provide under the same computational cost over earlier works [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] a semilocal convergence analysis with the following advantages: finer error bounds on the distances involved and a more precise information on the location of the solution. In the local case not examined in [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] we can show how to enlarge the radius of convergence and also obtain finer error estimates. Numerical examples are also provided to show that in the semilocal case our results can apply where others [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] fail, whereas in the local case we can obtain a larger radius of convergence than before [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 205, Issue 1, 1 August 2007, Pages 584–593
نویسندگان
,