کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4643361 1341377 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A telescoping method for double summations
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A telescoping method for double summations
چکیده انگلیسی

We present a method to prove hypergeometric double summation identities. Given a hypergeometric term F(n,i,j)F(n,i,j), we aim to find a difference operator L=a0(n)N0+a1(n)N1+⋯+ar(n)NrL=a0(n)N0+a1(n)N1+⋯+ar(n)Nr and rational functions R1(n,i,j),R2(n,i,j)R1(n,i,j),R2(n,i,j) such that LF=Δi(R1F)+Δj(R2F)LF=Δi(R1F)+Δj(R2F). Based on simple divisibility considerations, we show that the denominators of R1R1 and R2R2 must possess certain factors which can be computed from F(n,i,j)F(n,i,j). Using these factors as estimates, we may find the numerators of R1R1 and R2R2 by guessing the upper bounds of the degrees and solving systems of linear equations. Our method is valid for the Andrews–Paule identity, Carlitz's identities, the Apéry–Schmidt–Strehl identity, the Graham–Knuth–Patashnik identity, and the Petkovšek–Wilf–Zeilberger identity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 196, Issue 2, 15 November 2006, Pages 553–566
نویسندگان
, , ,