کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4643472 1632059 2006 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimized interface conditions in domain decomposition methods for problems with extreme contrasts in the coefficients
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Optimized interface conditions in domain decomposition methods for problems with extreme contrasts in the coefficients
چکیده انگلیسی

When the coefficients of a problem have jumps of several orders of magnitude and are anisotropic, many preconditioners and domain decomposition methods (DDM) suffer from plateaus in the convergence due to the presence of very small isolated eigenvalues in the spectrum of the preconditioned linear system. One way to improve the preconditioner is to use a linear algebra technique called deflation, or very similarly coarse grid corrections. In both cases, it is necessary to identify and compute, at least approximately, all the eigenvectors corresponding to the “bad” eigenvalues. In the framework of DDM, we propose a way to design interface conditions so that convergence is fast and does not have any plateau. The method relies only on the knowledge of the smallest and largest eigenvalues of an auxiliary matrix. The eigenvectors are not used. The method relies on van der Sluis’ result on a quasi-optimal diagonal preconditioner for a symmetric positive definite matrix. It is then possible to design Robin interface conditions using only one real parameter for the entire interface. By adding a second real parameter and more general interface conditions, it is possible to take into account highly heterogeneous and anisotropic media. Numerical results are given and compared with other approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 189, Issues 1–2, 1 May 2006, Pages 539–554
نویسندگان
, , ,