کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4643480 1632059 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical solution of partial differential equations with Powell–Sabin splines
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Numerical solution of partial differential equations with Powell–Sabin splines
چکیده انگلیسی

Powell–Sabin splines are piecewise quadratic polynomials with global C1C1-continuity. They are defined on conforming triangulations of two-dimensional domains, and admit a compact representation in a normalized B-spline basis. Recently, these splines have been used successfully in the area of computer-aided geometric design for the modelling and fitting of surfaces.In this paper, we discuss the applicability of Powell–Sabin splines for the numerical solution of partial differential equations defined on domains with polygonal boundary. A Galerkin-type PDE discretization is derived for the variable coefficient diffusion equation. Special emphasis goes to the treatment of Dirichlet and Neumann boundary conditions. Finally, an error estimator is developed and an adaptive mesh refinement strategy is proposed. We illustrate the effectiveness of the approach by means of some numerical experiments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 189, Issues 1–2, 1 May 2006, Pages 643–659
نویسندگان
, , ,