کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4693336 | 1636854 | 2011 | 12 صفحه PDF | دانلود رایگان |

The Dingshan area located in the northern part of the Junggar Basin of northwestern China is a significant prospect area for sandstone-type uranium deposits in China, where mainly Cenozoic rocks were deposited. The Cenozoic strata can be divided into four units according to the prior data and our own field observation. Sedimentary studies indicate that most Cenozoic strata were deposited under a hot and arid climate in a continental environment. The sedimentary facies are alluvial-fan, meandering-fluvial, and fluvio-lacustrine. Field investigation and interpretation of satellite images suggest that Cenozoic tectonics in the area is characterized by reactivation of early deep-seated thrusts, resulting in extensional fractures and formation of many small depressions in the shallow crustal level. Measurement of joint orientations suggests that regional shortening direction trends in north–south in the middle Pleistocene as indicated by the ESR (Electronic Spin Resonance) age of 0.1–0.4 Ma obtained from fault gouge and gypsum deposits. A four-stage sedimentation-tectonic evolution model of the northern Junggar Basin during the Late Cenozoic can be established based on reconstruction of sedimentary filling processes and Cenozoic tectonic movements. We suggest that landform evolution and groundwater movement are controlled by active tectonics, indicating that Late Cenozoic tectonic activities may also play important roles in the formation of sandstone-type uranium deposits. Therefore, a new metallogenic model for sandstone-type uranium deposits is proposed.
Research Highlights
► Most Cenozoic strata were deposited under a continental hot-arid climate environment.
► Late Cenozoic tectonics is characterized by reactivation of early deep-seated thrusts.
► A four-stage tectonic model during the Late Cenozoic is established.
► A new metallogenic model for sandstone-type uranium deposits is proposed.
Journal: Tectonophysics - Volume 497, Issues 1–4, 2 January 2011, Pages 45–56