کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4730733 1640375 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust–mantle interaction and lithospheric extension
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust–mantle interaction and lithospheric extension
چکیده انگلیسی


• The Nanshanping alkaline rocks were emplaced at 100–93 Ma.
• These alkaline rocks were derived from an enriched subducted-modified mantle source.
• These alkaline rocks experienced extensive fractionation but relatively lesser contamination by crustal materials.
• Partial melting occurred in an extensional setting, induced by slab break-off, foundering and rollback during the Cretaceous.

In situ zircon U–Pb ages and Hf isotopic data, major and trace elements, and Sr–Nd–Pb isotopic compositions are reported for Nanshanping alkaline rocks from the Zijingshan district in southwestern Fujian Province (the Interior or Western Cathaysia Block) of South China. The Nanshanping alkaline rocks, which consist of porphyritic quartz monzonite, porphyritic syenite, and syenite, revealed a Late Cretaceous age of 100–93 Ma. All of the rocks show high SiO2, K2O + Na2O, and LREE but low CaO, Fe2O3T, MgO, and HFSE (Nb, Ta, P, and Ti) concentrations. These rocks also exhibit uniform initial 87Sr/86Sr ratios of 0.7078 to 0.7087 and εNd(t) values of −4.1 to −7.2, thus falling within the compositional field of Cretaceous basalts and mafic dikes occurring in the Cathaysia Block. Additionally, these rocks display initial Pb isotopic compositions with a 206Pb/204Pbi ratio of 18.25 to 18.45, a 207Pb/204Pbi ratio of 15.63 to 15.67, and a 208Pb/204Pbi ratio of 38.45 to 38.88. Combined with the zircon Hf isotopic compositions (εHf(t) = −11.7 to −3.2), which are different from those of the basement rocks, we suggest that Nanshanping alkaline rocks were primarily derived from a subduction-related enriched mantle source. High Rb/Sr (0.29–0.65) and Zr/Hf (37.5–49.2) but relatively low Ba/Rb (4.4–8.1) ratios suggest that the parental magmas of these rocks were most likely formed via partial melting of a phlogopite-bearing mantle source with carbonate metasomatism. The relatively high SiO2 (62.35–70.79 wt.%) and low Nb/Ta (10.0–15.3) ratios, positive correlation between SiO2 and (87Sr/86Sr)I, and negative correlation between SiO2 and εNd(t) of these rocks suggest that the crustal materials were also involved in formation of the Nanshanping alkaline rocks. Combined with geochemical and isotopic features, we infer magmatic processes similar to AFC (assimilation and fractional crystallization) involving early fractionation of clinopyroxene and olivine and subsequent fractionation of biotite-dominated assemblages coupled with a lesser amount of crustal contamination, thereby forming the Nanshanping alkaline rocks. The Nanshanping alkaline rocks appear to be associated with an extensional environment in the Cathaysia Block. This extensional regime could have resulted in the slab break-off and rollback of the subducting paleo-Pacific plate and the upwelling of the asthenospheric mantle, which induced partial melting of the enriched lithospheric mantle in the Cretaceous.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Asian Earth Sciences - Volume 93, 15 October 2014, Pages 253–274
نویسندگان
, ,