کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4731040 1640391 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Contraction and extension in northern Borneo driven by subduction rollback
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
Contraction and extension in northern Borneo driven by subduction rollback
چکیده انگلیسی


• Interprets Neogene deformation in terms of regional extension not compression.
• Suggests extension driven primarily by rollback of Celebes Sea slab.
• Correlates important extension episodes with regional unconformities.
• Extension also linked to granite magmatism in Palawan and Sabah.

During the Paleogene the Proto-South China Sea was subducted beneath northern Borneo. Subduction ended with Early Miocene collision of the Dangerous Grounds/Reed Bank/North Palawan block and the Sabah–Cagayan Arc. Much of northern Borneo then became emergent forming the Top Crocker Unconformity. Later in the Early Miocene subsidence resumed. It is proposed that northward subduction of the Celebes Sea initiated formation of the Sulu Sea backarc basin, followed by subduction rollback to the SE. This formed a volcanic arc, which emerged briefly above sea level and collapsed in the Middle Miocene. As rollback continued the Sulu Arc was active during Middle and Late Miocene between Sabah and the Philippines. Rollback drove extension in northern Borneo and Palawan, accompanied by elevation of mountains, crustal melting, and deformation offshore. There were two important extensional episodes. The first at about 16 Ma is marked by the Deep Regional Unconformity, and the second at about 10 Ma produced the Shallow Regional Unconformity. Both episodes caused exhumation of deep crust, probably on low angle detachments, and were followed by granite magmatism. The NW Borneo–Palawan Trough and offshore Sabah fold and thrust belt are often interpreted as features resulting from collision, regional compression or subduction. However, there is no seismicity, dipping slab or volcanicity indicating subduction, nor obvious causes of compression. The trough developed after the Middle Miocene and is not the position of the Paleogene trench nor the site of Neogene subduction. Inboard of the trough is a thick sediment wedge composed of an external fold and thrust belt and internal extensional zone with structures broadly parallel to the trough. The trough is interpreted as a flexural response to gravity-driven deformation of the sediment wedge, caused by uplift on land that resulted from extension, with a contribution of deep crustal flow.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Asian Earth Sciences - Volume 76, 25 October 2013, Pages 399–411
نویسندگان
,