کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4733178 | 1640522 | 2013 | 17 صفحه PDF | دانلود رایگان |
• EBSD studies helps understanding kinematics and mechanisms of tectonic deformation.
• We examine how tectonic deformation is related to active enrichment processes.
• Fluid-assisted diffusion and anisotropic growth played an important role.
• Symmetrical fabric in shear zone reflects co-axial strain superposed on simple shear.
Schistose high-grade hematite orebodies (>64 wt % Fe) in the Iron Quadrangle, Minas Gerais, were formed in shear zones by hydrothermal alteration of the Paleoproterozoic Cauê BIF during the Transamazonian orogenesis. The ore is comprised of platy hematite (specularite) grains that define the foliation and overprint a relict banded martite-hematite fabric resembling, at first sight, a mylonite. The EBSD analyses of a m-scale schistose orebody from the Pau Branco mine show that specularite grew as elongated plates with the (00.1) plane parallel to the foliation. The population of the measured grain aspect ratio (GAR) is homogenous in different scales, and the longest axes of the crystals align with the stretching lineation (L//X) building continuous domains, or anastomose around stretched iron oxide aggregates and rootless fold hinges. The pole figure of the (00.1) plane shows usually a maximum centered on the pole of the foliation Z often elongated on a girdle perpendicular to the lineation L. The {10.4} pole figure has the configuration of a symmetric cleft girdle and the corresponding {11.0} and {10.0} pole figures present well developed girdles parallel to the foliation with an elongated maximum centered on X. Microstructures associated with crystal-plastic behavior and dynamic recrystallization are missing and the fabric of the orebody probably results from precipitation of strain-controlled oriented hematite plates and anisotropic syntaxial growth of favorably oriented grains with the intervention of hydrothermal fluids during Fe enrichment. The shear zone provided pathways for the percolation of mineralizing fluids under temperatures that varied from 140 to 350 °C or higher, under ductile or ductile–brittle conditions. The orthorhombic fabric and CPO (crystallographic preferred orientation) of the ore nevertheless contrast with the asymmetry of simple shear as observed in the torsion experiments by Siemes et al., 2010 and Siemes et al., 2011, probably due to volume loss and possibly a flattening component of deformation in the ore zone.
Journal: Journal of Structural Geology - Volume 55, October 2013, Pages 150–166