کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4735459 1640853 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation
چکیده انگلیسی


• In-life dissolution of fossil pteropod shells was examined using the LDX scale.
• Average shell diameter was used as an indicator of calcification rate.
• LDX shows significant correlation to CO2 and surface water carbonate concentration.
• Smaller, more corroded shells were found during interglacial periods.
• Larger, pristine shells were found during glacial periods.

Recent concern over the effects of ocean acidification upon calcifying organisms has highlighted the aragonitic shelled thecosomatous pteropods as being at a high risk. Both in-situ and laboratory studies have shown that an increased dissolved CO2 concentration, leading to decreased water pH and low carbonate concentration, causes reduced calcification rates and enhanced dissolution in the shells of living pteropods. In fossil records unaffected by post-depositional dissolution, this in-life shell dissolution can be detected. Here we present the first evidence of variations of in-life pteropod shell dissolution due to variations in surface water carbonate concentration during the Late Pleistocene by analysing the surface layer of pteropod shells in marine sediment cores from the Caribbean Sea and Indian Ocean. In-life shell dissolution was determined by applying the Limacina Dissolution Index (LDX) to the sub-tropical pteropod Limacina inflata. Average shell size information shows that high in-life dissolution is accompanied by smaller shell sizes in L. inflata, which may indicate a reduction in calcification rate. Comparison of the LDX profile to Late Pleistocene Vostok atmospheric CO2 concentrations, shows that in-life pteropod dissolution is closely associated to variations in past ocean carbonate saturation. This study confirms the findings of laboratory studies, showing enhanced shell dissolution and reduced calcification in living pteropods when surface ocean carbonate concentrations were lower. Results also demonstrate that oceanic pH levels that were less acidic and changing less rapidly than those predicted for the 21st Century, negatively affected pteropods during the Late Pleistocene.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Quaternary Science Reviews - Volume 81, 1 December 2013, Pages 29–34
نویسندگان
, , ,