کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4736637 | 1640907 | 2011 | 17 صفحه PDF | دانلود رایگان |

We dated a continuous, ∼22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ∼450 yr during glacial and late glacial time to ∼200 yr during the early and mid-Holocene, and increasing again to ∼250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ∼50–230 yr during the Holocene and ∼250–550 yr in the glacial section of the record. The δ13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.
► We produced a 25 ka chronology for a new key archive from equatorial East Africa.
► Its chronology is based on 210Pb dates as well as bulk and charcoal 14C dates.
► We model a temporally varying old-carbon offset for bulk 14C dates.
► Our record has one of the most reliable 14C chronologies for any lake worldwide.
Journal: Quaternary Science Reviews - Volume 30, Issues 21–22, October 2011, Pages 3043–3059