کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4736674 1640922 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Loess and floods: High-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی
پیش نمایش صفحه اول مقاله
Loess and floods: High-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia
چکیده انگلیسی

Terrace remnants of late Pleistocene fine-grained valley-fill deposits (Silts) deeply entrenched by ephemeral traction load streams in arid areas remain a puzzle. They have been attributed to a variety of origins ranging from lacustrine to alluvial floodplains. We here report a centimetre-scale multi-proxy study of a 7 m section of Silts in the semi-arid Flinders Ranges of South Australia, which span the lead-up to and peak of the Last Glacial Maximum (LGM). The results of detailed lithostratigraphic mapping, high-resolution parametric particle-size analysis, Automated Mineralogy, induced magnetic susceptibility, carbon stable isotope geochemistry, and a chronostratigraphy based on 27 AMS radiocarbon and 6 luminescence ages are discussed in terms of sediment provenance, depositional environment and weathering history with the aim of reconstructing the regional palaeo-environment. The data are consistent with a fluctuating aeolian-fluvial interplay dominating the extended LGM environment with a greater impact on the landscape than all combined geomorphic processes since then. Accordingly, weathered slope mantles and loess accessions were eroded and entrained by numerous small and at least a dozen large-scale flood events, and trapped in an intra-montane floodplain extending into Brachina Gorge. Upstream of this narrow constriction, recurrent backflooding is discussed resulting in a thick sequence of layered to laminated slackwater couplets. Aggradation and degradation of valley-fills appear to be largely controlled by fine-sediment supply from the valley slopes, replenished by wind-blown dust from upwind playa lakes and source-bordering dunefields. In conclusion, this study demonstrates how dust storms and flooding rains can account for ‘pluvial’ features previously explained by the opposing effects of reduced precipitation and evaporation in the colder more arid glacial landscape of southern Australia.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Quaternary Science Reviews - Volume 29, Issues 19–20, September 2010, Pages 2673–2693
نویسندگان
, , , , , , , , ,