کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4758981 1420866 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland
ترجمه فارسی عنوان
تجزیه تبخیر تعرق از طریق اندازه گیری ایزوتوپهای اکساوری در محل در یک گیاه واحدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
چکیده انگلیسی
The oxygen isotope compositions of ecosystem water pools and fluxes are useful tracers in the water cycle. As part of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) program, high-frequency and near-continuous in situ measurements of 18O composition of atmospheric vapor (δv) and of evapotranspiration (δET) were made with the flux-gradient method using a cavity ring-down spectroscopy water vapor isotope analyzer. At the sub-daily scale, we found, in conjunction with intensive isotopic measurements of other ecosystem water pools, that the differences between 18O composition of transpiration (δT) and of xylem water (δx) were negligible in early afternoon (13:00-15:00 Beijing time) when ET approached the daytime maximum, indicating isotopic steady state. At the daily scale, for the purpose of flux partitioning, δT was approximated by δx at early afternoon hours, and the 18O composition of soil evaporation (δE) was obtained from the Craig-Gordon model with a moisture-dependent soil resistance. The relative contribution of transpiration to evapotranspiration ranged from 0.71 to 0.96 with a mean of 0.87 ± 0.052 for the growing season according to the isotopic labeling, which was good agreement with soil lysimeter measurements showing a mean transpiration fraction of 0.86 ± 0.058. At the growing season scale, the predicted 18O composition of runoff water was within the range of precipitation and irrigation water according to the isotopic mass conservation. The 18O mass conservation requires that the decreased δ18O of ET should be balanced by enhanced δ18O of runoff water.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural and Forest Meteorology - Volumes 230–231, 15 December 2016, Pages 89-96
نویسندگان
, , , ,