کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4994675 1458037 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effects of radiation optical properties on the unsteady 2D boundary layer MHD flow and heat transfer over a stretching plate
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
The effects of radiation optical properties on the unsteady 2D boundary layer MHD flow and heat transfer over a stretching plate
چکیده انگلیسی
In this work, the effects of radiation optical properties and Lorentz force on the 2D unsteady laminar boundary magnetohydrodynamic (MHD) fluid flow and heat transfer along a semi-infinite stretching plate are numerically investigated, the Joule heating effect and viscous dissipation are considered. The heat flux caused by the thermal radiation is obtained by solving the radiation transfer equation (RTE) instead of the Rosseland approximation. All the governing equations, including continuous equation, momentum equation, energy equation, and RTE subject to the boundary radiative emission, are transformed into dimensionless forms. The dimensionless governing equations together with the corresponding boundary conditions are solved numerically via Chebyshev collocation spectral method (CCSM). The effects of various physical parameters, say, Ha, Pr, Ec and Pl, especially the optical properties such as the optical thickness, the scattering albedo, and the wall emissivity of the plate, on the flow and heat transfer are depicted graphically and analyzed in detail. It is found that, due to the thermal radiation, the overall average temperature within the boundary layer becomes much higher and the boundary layer becomes thicker. The magnetic force can suppress the fluid flow significantly and stop the convective heat transfer effectively. Viscous dissipation and Joule heating greatly enhance the temperature distribution with the help of the magnetic field.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 105, February 2017, Pages 109-123
نویسندگان
, , ,