کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5435771 1509536 2017 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by in-situ X-radiography and numerical modelling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by in-situ X-radiography and numerical modelling
چکیده انگلیسی

A comprehensive study on the heterogeneous nucleation and grain growth of Al-10 wt.%Cu alloys inoculated with Al-5Ti-1B was carried out. To further reveal the solute segregation stifling mechanism, in-situ near-isothermal melt solidification experiments with constant cooling rates and greatly suppressed melt convection were realized by in-situ microfocus X-radiography study. The kinetics of heterogeneous nucleation and grain growth under the isolated influence of cooling rate and addition level of inoculant particles has been quantitatively studied. Moreover, novel image processing and analysis approaches have been proposed, to determine the maximum nucleation undercooling and solid volume fraction at nucleation ceasing. To better understand the heterogeneous nucleation and grain growth behaviors under the in-situ experiment conditions, a new grain size prediction model in which both pure globular growth kinetics and dendritic growth kinetics including spherical/globular to dendritic transition (GDT) has been developed. The quantitative agreements between the simulation results and experimental results in terms of grain size, maximum nucleation undercooling and solid fraction at nucleation ceasing, have confirmed the validity of the solute segregation stifling mechanism for castings without recalescence. Furthermore, it is demonstrated that globular growth kinetics is an acceptable approximation for grain size prediction purposes of well grain-refined aluminum alloys. However, for poorly inoculated aluminum alloys with well-developed coarse dendritic grains, an application of dendritic growth kinetics significantly improves the grain size prediction power of the model.

341

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 140, November 2017, Pages 224-239
نویسندگان
, , , , , ,