کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5436207 | 1509547 | 2017 | 7 صفحه PDF | دانلود رایگان |

The mechanical behavior of several 5Ã5 micron sized Cu bi-crystals with a single coherent Σ3{111} twin boundary (TB) is studied by in situ Laue microdiffraction (μLaue) compression with the aim to unravel the slip transfer mechanisms through TBs. Single crystalline pillars (SCP) are additionally tested and used as reference samples. Engineering stress-strain curves and post mortem scanning electron microscopy (SEM) images were correlated to the local evolution of the TB angle, the storage of geometrically necessary dislocations and crystal orientations investigated by in situ X-ray Laue microdiffraction (μLaue). Both μLaue and post mortem SEM demonstrate multiple transmission events through the TB without significant storage of geometrically necessary dislocations in the crystals or at the boundary, independent on the compression direction. Nevertheless, at engineering strains larger than 5% a small dislocation pile-up was once observed temporarily at the boundary. Upper and lower bounds for the transmission stress are discussed based on the current experimental results.
147
Journal: Acta Materialia - Volume 129, 1 May 2017, Pages 91-97