کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5436271 1509548 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling and characterisation of stress-induced carbide precipitation in bearing steels under rolling contact fatigue
ترجمه فارسی عنوان
مدلسازی و مشخص کردن بارندگی کاربید ناشی از استرس در ستون های تحمل شده تحت خستگی نورد
کلمات کلیدی
مارتنزیت، خستگی تماس نورد، تغییرات میکرو سازنده، کاربید های چسبنده، مدل سازی خستگی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
چکیده انگلیسی

The nucleation and growth of lenticular carbides (LCs) in bearing steels occur near to deformed ferrite bands after exposure to prolonged rolling contact fatigue (RCF). Since the first observations in 1947, a large number of attempts have been made to explain the formation mechanisms of such stress-induced microstructural alterations, but a reliable model was still not available. In this research, a novel theory is proposed to describe the carbon redistribution process during LC formation. The theory suggests a dislocation assisted LC growth mechanism on the basis of the classic Cottrell atmosphere formation theory. The mechanism considers (1) JLC=Jd, the carbon flux equilibrium between LC thickening (JLC) and dislocation-assisted carbon migration (Jd), and (2) M0=MLC+Mb, the carbon mass conservation of the system, where M0 denotes the total amount of carbon within the system, MLC denotes the amount of carbon within a LC, and Mb denotes the amount of carbon left within the ferrite band, respectively. The solution to these two equations, which addresses the problem that has been puzzling researchers for several decades, makes good predictions on LC thickening rate under various testing conditions. The stress-induced carbide precipitation was examined using high resolution characterisation techniques such as scanning and transmission electron microscopy, obtaining significant evidence to support the postulated theory. The successful description of LC growth implies a potential extension of the theory to other types of stress induced microstructural changes in bearing steels where carbon redistribution occurs. The model presented here provides a more comprehensive understanding of RCF from a microstructural point of view, and thus can enhance the accuracy of traditional bearing life prediction approaches.

304

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 128, 15 April 2017, Pages 176-187
نویسندگان
, , ,