کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5721616 | 1608051 | 2017 | 11 صفحه PDF | دانلود رایگان |

BackgroundKey lifestyle-environ risk factors are operative for depression, but it is unclear how risk factors cluster. Machine-learning (ML) algorithms exist that learn, extract, identify and map underlying patterns to identify groupings of depressed individuals without constraints. The aim of this research was to use a large epidemiological study to identify and characterise depression clusters through “Graphing lifestyle-environs using machine-learning methods” (GLUMM).MethodsTwo ML algorithms were implemented: unsupervised Self-organised mapping (SOM) to create GLUMM clusters and a supervised boosted regression algorithm to describe clusters. Ninety-six “lifestyle-environ” variables were used from the National health and nutrition examination study (2009-2010). Multivariate logistic regression validated clusters and controlled for possible sociodemographic confounders.ResultsThe SOM identified two GLUMM cluster solutions. These solutions contained one dominant depressed cluster (GLUMM5-1, GLUMM7-1). Equal proportions of members in each cluster rated as highly depressed (17%). Alcohol consumption and demographics validated clusters. Boosted regression identified GLUMM5-1 as more informative than GLUMM7-1. Members were more likely to: have problems sleeping; unhealthy eating; â¤Â 2 years in their home; an old home; perceive themselves underweight; exposed to work fumes; experienced sex at â¤Â 14 years; not perform moderate recreational activities. A positive relationship between GLUMM5-1 (OR: 7.50, P < 0.001) and GLUMM7-1 (OR: 7.88, P < 0.001) with depression was found, with significant interactions with those married/living with partner (P = 0.001).ConclusionUsing ML based GLUMM to form ordered depressive clusters from multitudinous lifestyle-environ variables enabled a deeper exploration of the heterogeneous data to uncover better understandings into relationships between the complex mental health factors.
Journal: European Psychiatry - Volume 39, January 2017, Pages 40-50