کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5721616 1608051 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Original articleWhy so GLUMM? Detecting depression clusters through graphing lifestyle-environs using machine-learning methods (GLUMM)
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی روانپزشکی و بهداشت روانی
پیش نمایش صفحه اول مقاله
Original articleWhy so GLUMM? Detecting depression clusters through graphing lifestyle-environs using machine-learning methods (GLUMM)
چکیده انگلیسی

BackgroundKey lifestyle-environ risk factors are operative for depression, but it is unclear how risk factors cluster. Machine-learning (ML) algorithms exist that learn, extract, identify and map underlying patterns to identify groupings of depressed individuals without constraints. The aim of this research was to use a large epidemiological study to identify and characterise depression clusters through “Graphing lifestyle-environs using machine-learning methods” (GLUMM).MethodsTwo ML algorithms were implemented: unsupervised Self-organised mapping (SOM) to create GLUMM clusters and a supervised boosted regression algorithm to describe clusters. Ninety-six “lifestyle-environ” variables were used from the National health and nutrition examination study (2009-2010). Multivariate logistic regression validated clusters and controlled for possible sociodemographic confounders.ResultsThe SOM identified two GLUMM cluster solutions. These solutions contained one dominant depressed cluster (GLUMM5-1, GLUMM7-1). Equal proportions of members in each cluster rated as highly depressed (17%). Alcohol consumption and demographics validated clusters. Boosted regression identified GLUMM5-1 as more informative than GLUMM7-1. Members were more likely to: have problems sleeping; unhealthy eating; ≤ 2 years in their home; an old home; perceive themselves underweight; exposed to work fumes; experienced sex at ≤ 14 years; not perform moderate recreational activities. A positive relationship between GLUMM5-1 (OR: 7.50, P < 0.001) and GLUMM7-1 (OR: 7.88, P < 0.001) with depression was found, with significant interactions with those married/living with partner (P = 0.001).ConclusionUsing ML based GLUMM to form ordered depressive clusters from multitudinous lifestyle-environ variables enabled a deeper exploration of the heterogeneous data to uncover better understandings into relationships between the complex mental health factors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Psychiatry - Volume 39, January 2017, Pages 40-50
نویسندگان
, , , , , , ,