کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5771430 1413316 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A stepwise model to predict monthly streamflow
ترجمه فارسی عنوان
یک مدل گام به گام برای پیش بینی جریان ماهانه
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی
In this study, a stepwise model empowered with genetic programming is developed to predict the monthly flows of Hurman River in Turkey and Diyalah and Lesser Zab Rivers in Iraq. The model divides the monthly flow data to twelve intervals representing the number of months in a year. The flow of a month, t is considered as a function of the antecedent month's flow (t − 1) and it is predicted by multiplying the antecedent monthly flow by a constant value called K. The optimum value of K is obtained by a stepwise procedure which employs Gene Expression Programming (GEP) and Nonlinear Generalized Reduced Gradient Optimization (NGRGO) as alternative to traditional nonlinear regression technique. The degree of determination and root mean squared error are used to evaluate the performance of the proposed models. The results of the proposed model are compared with the conventional Markovian and Auto Regressive Integrated Moving Average (ARIMA) models based on observed monthly flow data. The comparison results based on five different statistic measures show that the proposed stepwise model performed better than Markovian model and ARIMA model. The R2 values of the proposed model range between 0.81 and 0.92 for the three rivers in this study.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 543, Part B, December 2016, Pages 283-292
نویسندگان
, ,