کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5776106 1631967 2017 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On stability and convergence of semi-Lagrangian methods for the first-order time-dependent nonlinear partial differential equations in 1D
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On stability and convergence of semi-Lagrangian methods for the first-order time-dependent nonlinear partial differential equations in 1D
چکیده انگلیسی
In this article, one-step semi-Lagrangian method is investigated for computing the numerical solutions of the first-order time-dependent nonlinear partial differential equations in 1D with initial and boundary conditions. This method is based on Lagrangian trajectory or the integration from the departure points to the arrival points (regular nodes) and Runge-Kutta method for ordinary differential equations. The departure points are traced back from the arrival points along the trajectory of the path. The convergence and stability are studied for the implicit and explicit methods. The numerical examples show that those methods work very efficient for the time-dependent nonlinear partial differential equations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 324, November 2017, Pages 72-84
نویسندگان
,