کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5776141 | 1631963 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new adaptive weighted essentially non-oscillatory WENO-θ scheme for hyperbolic conservation laws
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A new adaptive weighted essentially non-oscillatory WENO-θ scheme in the context of finite difference is proposed. Depending on the smoothness of the large stencil used in the reconstruction of the numerical flux, a parameter θ is set adaptively to switch the scheme between a 5th-order upwind and 6th-order central discretization. A new indicator Ïθ measuring the smoothness of the large stencil is chosen among two candidates which are devised based on the possible highest-order variations of the reconstruction polynomials in L2 sense. In addition, a new set of smoothness indicators βÌk of the substencils is introduced. These are constructed in a central sense with respect to the Taylor expansions around the point xj. Numerical results show that the new scheme outperforms other comparing 6th-order WENO schemes in terms of improving the resolution at critical regions of nonsmooth problems as well as maintaining symmetry in the solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 328, 15 January 2018, Pages 314-339
Journal: Journal of Computational and Applied Mathematics - Volume 328, 15 January 2018, Pages 314-339
نویسندگان
Chang-Yeol Jung, Thien Binh Nguyen,