کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5776292 1631971 2017 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On regularizing effects of MINRES and MR-II for large scale symmetric discrete ill-posed problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On regularizing effects of MINRES and MR-II for large scale symmetric discrete ill-posed problems
چکیده انگلیسی
For large scale symmetric discrete ill-posed problems, MINRES and MR-II are often used iterative regularization solvers. We call a regularized solution best possible if it is at least as accurate as the best regularized solution obtained by the truncated singular value decomposition (TSVD) method. In this paper, we analyze their regularizing effects and establish the following results: (i) the filtered SVD expression are derived for the regularized solutions by MINRES; (ii) a hybrid MINRES that uses explicit regularization within projected problems is needed to compute a best possible regularized solution to a given ill-posed problem; (iii) the kth iterate by MINRES is more accurate than the (k−1)th iterate by MR-II until the semi-convergence of MINRES, but MR-II has globally better regularizing effects than MINRES; (iv) bounds are obtained for the 2-norm distance between an underlying k-dimensional Krylov subspace and the k-dimensional dominant eigenspace. They show that MR-II has better regularizing effects for severely and moderately ill-posed problems than for mildly ill-posed problems, and a hybrid MR-II is needed to get a best possible regularized solution for mildly ill-posed problems; (v) bounds are derived for the entries generated by the symmetric Lanczos process that MR-II is based on, showing how fast they decay. Numerical experiments confirm our assertions. Stronger than our theory, the regularizing effects of MR-II are experimentally shown to be good enough to obtain best possible regularized solutions for severely and moderately ill-posed problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 320, 15 August 2017, Pages 145-163
نویسندگان
, ,