کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5776320 | 1631974 | 2017 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments
ترجمه فارسی عنوان
همگرایی و پایداری روش تتا تقسیم شده برای معادلات دیفرانسیل تصادفی با استدلال مستقل قطعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
In this paper, we consider the stochastic differential equations with piecewise continuous arguments (SDEPCAs) in which both the drift and the diffusion coefficients do not satisfy the global Lipschitz and linear growth conditions, especially the diffusion coefficients are highly non-linear growing. It is proved that the split-step theta (SST) method with θâ[12,1] is strongly convergent to SDEPCAs under the local Lipschitz, monotone and one-sided Lipschitz conditions. It is also obtained that the SST method with θâ(12,1] preserves the exponential mean square stability of SDEPCAs under the monotone condition and some condition on the step-size. Without any restriction on the step-size, there exists θââ(12,1] such that the SST method with θâ(θâ,1] is exponentially stable in mean square. Moreover, for sufficiently small step-size, the rate constant can be reproduced. Some numerical simulations are presented to illustrate the analytical theory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 317, June 2017, Pages 55-71
Journal: Journal of Computational and Applied Mathematics - Volume 317, June 2017, Pages 55-71
نویسندگان
Y.L. Lu, M.H. Song, M.Z. Liu,