کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5776340 | 1631974 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical CP decomposition of some difficult tensors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a numerical method is proposed for canonical polyadic (CP) decomposition of small size tensors. The focus is primarily on decomposition of tensors that correspond to small matrix multiplications. Here, rank of the tensors is equal to the smallest number of scalar multiplications that are necessary to accomplish the matrix multiplication. The proposed method is based on a constrained Levenberg-Marquardt optimization. Numerical results indicate the rank and border ranks of tensors that correspond to multiplication of matrices of the size 2Ã3 and 3Ã2, 3Ã3 and 3Ã2, 3Ã3 and 3Ã3, and 3Ã4 and 4Ã3. The ranks are 11, 15, 23 and 29, respectively. In particular, a novel algorithm for computing product of matrices of the sizes 3Ã4 and 4Ã3 using 29 multiplications is presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 317, June 2017, Pages 362-370
Journal: Journal of Computational and Applied Mathematics - Volume 317, June 2017, Pages 362-370
نویسندگان
Petr Tichavský, Anh-Huy Phan, Andrzej Cichocki,