کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5776345 1631974 2017 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strong superconvergence of the Euler-Maruyama method for linear stochastic Volterra integral equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Strong superconvergence of the Euler-Maruyama method for linear stochastic Volterra integral equations
چکیده انگلیسی
The Euler-Maruyama method is presented for linear stochastic Volterra integral equations. Then the strong convergence property is analyzed for convolution kernels and general kernels, respectively. It is well known that for stochastic ordinary differential equations, the strong convergence order of the Euler-Maruyama method is 12. However, the strong superconvergence order of 1 is obtained for linear stochastic Volterra integral equations with convolution kernels if the kernel K2 of the diffusion term satisfies K2(0)=0; and this strong superconvergence property is inherited by linear stochastic Volterra integral equations with general kernels if the kernel K2 of the diffusion term satisfies K2(t,t)=0. The theoretical results are illustrated by extensive numerical examples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 317, June 2017, Pages 447-457
نویسندگان
, , ,