کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5799997 | 1555352 | 2015 | 12 صفحه PDF | دانلود رایگان |

- Proteomics identified 22 proteins of Pseudomonas fluorescens TSS regulated in expression by iron.
- Genes of four of the proteins, i.e. hemO, pspB, tfeR, and sod, were knocked out.
- hemO, pspB, and tfeR knockouts were significantly impaired in in vivo infectivity.
- rTfeR as a subunit vaccine induced significant protection against TSS challenge.
- Antibody blocking of TfeR significantly inhibited TSS infection into fish cells.
For pathogenic bacteria, the ability to acquire iron is vital to survival in the host. In consequence, many genes involved in iron acquisition are associated with bacterial virulence. Pseudomonas fluorescens is a bacterial pathogen to a variety of farmed fish. However, the global regulatory function of iron in pathogenic P. fluorescens is essentially unknown. In this study, in order to identify proteins affected by iron condition at the expression level, we performed proteomic analysis to compare the global protein profiles of P. fluorescens strain TSS, a fish pathogen, cultured under iron-replete and iron-deplete conditions. Twenty-two differentially expressed proteins were identified, most of which were confirmed to be regulated by iron at the mRNA level. To investigate their potential involvement in virulence, the genes encoding four of the 22 proteins, i.e. HemO (heme oxygenase), PspB (serine protease), Sod (superoxide dismutase), and TfeR (TonB-dependent outermembrane ferric enterobactin receptor), were knocked out, and the pathogenicity of the mutants was examined in a model of turbot (Scophthalmus maximus). The results showed that compared to the wild type, the hemO, pspB, and tfeR knockouts were significantly impaired in the ability to survive in host serum, to invade host tissues, and to cause host mortality. Immunization of turbot with recombinant TfeR (rTfeR) and PspB induced production of specific serum antibodies and significant protections against lethal TSS challenge. Further analysis showed that rTfeR antibodies recognized and bound to TSS, and that treatment of TSS with rTfeR antibodies significantly impaired the infectivity of TSS to fish cells. Taken together, these results indicate for the first time that in pathogenic P. fluorescens, iron affects the expression of a large number of proteins including those that are involved in host infection.
Journal: Veterinary Microbiology - Volume 176, Issues 3â4, 17 April 2015, Pages 309-320