کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5820997 | 1557409 | 2012 | 8 صفحه PDF | دانلود رایگان |

The aim of this study was to investigate the sterilization stability of cytarabine (Ara-C) loaded vesicular phospholipid gels (VPGs). VPGs were prepared by high pressure homogenization method intended for the treatment of glioblastoma multiforme (GBM) in brain as injectable implant. The particle size of VPGs after redispersion was 119.6 ± 66.24 nm, and entrapment efficiency (EE) was 32.6 ± 2.1%. Drug release in vitro from VPGs sustained for 80 h with 48.1% initial release within 1 h, and rheological studies demonstrated a gel-like behavior. Comparatively, after autoclaved sterilization, increased particle size and EE were obtained as 165.6 ± 71.89 nm and 62.6 ± 2.3%, respectively. Additionally, characteristics of drug release were significantly altered with obviously prolonged release time to 450 h and remarkable reduced initial release to 24.7%. Also, the viscoelasticity was reinforced with clearly decreased fluidity. This result could be explained by the fusion of small vesicles witnessed in TEM observation, which resulted in percentages change of vesicle groups with different size. However, reduced Ara-C and increased lysophosphatidylcholine (LPC) were observed. Among the stabilizers, addition of sodium sulfite showed best effects with high stability of Ara-C and phospholipids. This may be explained by the presence of SO3â, free radicals produced by sodium sulfite. Being an hydroxyl radical scavenger, it can reduce the generation of HO free radicals. These results show that, with addition of appropriate stabilizers, VPGs can be autoclaved with high stability, and it is a promising dosage form for treatment of GBM after injection into resectable or nonresectable neoplasms with sustained release properties.
123
Journal: International Journal of Pharmaceutics - Volume 427, Issue 2, 10 May 2012, Pages 234-241