کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6137181 | 1225500 | 2009 | 4 صفحه PDF | دانلود رایگان |

Plasmodium falciparum cells tend to grow in synchronicity during their cyclic intraerythrocytic development in vivo. Both host and parasite factors appear to be involved in this synchronization. We examined the link between mixed-allelic-family P. falciparum infection and synchronicity in parasitized red blood cells (PRBC) from symptomatic children.The distribution of rings and trophozoites in each PRBC sample was determined by standard microscopy. P. falciparum was genotyped by using a polymerase chain reaction (PCR) targeting three loci (merozoite surface proteins (MSP) 1 and 2, and 175-kD erythrocyte binding antigen (EBA), allowing us to distinguish parasite clones belonging to a single-allelic family (SAF) and those belonging to a mixed-allelic family (MAF). Parasite development was considered synchronous when peripheral blood contained at least 95% of rings or 95% of trophozoites.Parasite development was synchronous in 22 (21.2%) of the 104 children studied. Twenty (90.9%) of these infections were SAF and two (9.1%) were MAF. Rings and trophozoites predominated in respectively 12 (60%) and 8 (40%) SAF infections. Respectively 17.1% and 82.9% of the 82 asynchronous cases corresponded to SAF and MAF infection. Parasite synchronicity was therefore significantly related to single-allelic-family infection (p < 2 Ã 10â 10).Twenty different MSP-1 alleles and thirteen different MSP-2 alleles were identified. Only three isolates from patients with SAF infection comprised a single allele or genotype, the other isolates harboring at least two alleles. The mean number of alleles or clones was respectively 3.0 and 10.0 in SAF and MAF infection. These results reflect the allelic diversity of the MSP loci and show that SAF infection can correspond to multiple parasite clones (or genotypes) but, in general, fewer than in MAF infection (p â¤Â 0.0007).These results confirm the extensive polymorphism of P. falciparum vaccine candidates MSP-1 and -2 in southeastern Gabon and demonstrate that parasite synchronicity in vivo is strongly associated with single-allelic-family infection.
Journal: Parasitology International - Volume 58, Issue 4, December 2009, Pages 390-393